Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 10: e14324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389412

RESUMO

Background: Although genome-wide association studies (GWAS) are an increasingly informative tool in the mining of new quantitative trait loci (QTLs), a classical biparental mapping approach is still a powerful, widely used method to search the unique genetic factors associated with important agronomic traits in bread wheat. Methods: In this study, a newly constructed mapping population of Pamyati Azieva (Russian Federation) × Paragon (UK), consisting of 94 recombinant inbred lines (RILs), was tested in three different regions of Kazakhstan with the purpose of QTL identification for key agronomic traits. The RILs were tested in 11 environments of two northern breeding stations (Petropavlovsk, North Kazakhstan region, and Shortandy, Aqmola region) and one southeastern station (Almalybak, Almaty region). The following eight agronomic traits were studied: heading days, seed maturation days, plant height, spike length, number of productive spikes, number of kernels per spike, thousand kernel weight, and yield per square meter. The 94 RILs of the PAxP cross were genotyped using Illumina's iSelect 20K single nucleotide polymorphism (SNP) array and resulted in the identification of 4595 polymorphic SNP markers. Results: The application of the QTL Cartographer statistical package allowed the identification of 53 stable QTLs for the studied traits. A survey of published studies related to common wheat QTL identification suggested that 28 of those 53 QTLs were presumably novel genetic factors. The SNP markers for the identified QTLs of the analyzed agronomic traits of common wheat can be efficiently applied in ongoing breeding activities in the wheat breeding community using a marker-assisted selection approach.


Assuntos
Locos de Características Quantitativas , Triticum , Locos de Características Quantitativas/genética , Triticum/genética , Cazaquistão , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Pão , Polimorfismo de Nucleotídeo Único/genética
2.
Agric Syst ; 193: 103168, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36284566

RESUMO

Context: The COVID-19 pandemic has been affecting health and economies across the world, although the nature of direct and indirect effects on Asian agrifood systems and food security has not yet been well understood. Objectives: This paper assesses the initial responses of major farming and food systems to COVID-19 in 25 Asian countries, and considers the implications for resilience, food and nutrition security and recovery policies by the governments. Methods: A conceptual systems model was specified including key pathways linking the direct and indirect effects of COVID-19 to the resilience and performance of the four principal Asian farming and food systems, viz, lowland rice based; irrigated wheat based; hill mixed; and dryland mixed systems. Based on this framework, a systematic survey of 2504 key informants (4% policy makers, 6% researchers or University staff, 6% extension workers, 65% farmers, and 19% others) in 20 Asian countries was conducted and the results assessed and analysed. Results and conclusion: The principal Asian farming and food systems were moderately resilient to COVID-19, reinforced by government policies in many countries that prioritized food availability and affordability. Rural livelihoods and food security were affected primarily because of disruptions to local labour markets (especially for off-farm work), farm produce markets (notably for perishable foods) and input supply chains (i.e., seeds and fertilisers). The overall effects on system performance were most severe in the irrigated wheat based system and least severe in the hill mixed system, associated in the latter case with greater resilience and diversification and less dependence on external inputs and long market chains. Farming and food systems' resilience and sustainability are critical considerations for recovery policies and programmes, especially in relation to economic performance that initially recovered more slowly than productivity, natural resources status and social capital. Overall, the resilience of Asian farming and food systems was strong because of inherent systems characteristics reinforced by public policies that prioritized staple food production and distribution as well as complementary welfare programmes. With the substantial risks to plant- and animal-sourced food supplies from future zoonoses and the institutional vulnerabilities revealed by COVID-19, efforts to improve resilience should be central to recovery programmes. Significance: This study was the first Asia-wide systems assessment of the effects of COVID-19 on agriculture and food systems, differentiating the effects of the pandemic across the four principal regional farming and food systems in the region.

3.
PLoS One ; 14(8): e0221064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404111

RESUMO

In barley, six-rowed barley is advantageous over two-rowed barley for feed due to the larger number of seeds per spike and the higher seed protein content. The growth of six-rowed barley is potentially important for breeding in agriculturally oriented countries, such as Kazakhstan. Nevertheless, until recently, very little attention was given to six-rowed barley in breeding projects in Kazakhstan, one of the largest countries in the world. In this study, phenotyping and single nucleotide polymorphism (SNP) genotyping data were generated from 275 accessions originating from six different breeding organizations in the USA as well as 9 accessions from Kazakhstan in field trials at six breeding institutions. The USA six-rowed barley was tested in comparison to local accessions over three years (2009-2011) based on analyses of key agronomic traits. It was determined that the average yield in the USA accessions in comparison to local lines showed heavier yield in all six tested sites. Principal Coordinate Analysis based on 1618 polymorphic SNP markers separated Kazakh lines from six USA barley origin groups based on PC1 (77.9%), and Montana lines from the remaining five USA groups based on PC2 (15.1%). A genome-wide association study based on eighteen field trials allowed the identification of 47 stable marker-trait associations (MTA) for ten agronomic traits, including key yield related characters such as yield per square meter, thousand grain weight, number of kernels per spike, and productive tillers. The comparison of chromosomal positions of identified MTA with positions of known genes and quantitative trait loci suggests that 25 out of those 47 MTAs are presumably novel. The analysis of 42 SNPs associated with 47 MTAs in the Ensemble genome annotation system (http://ensemblgenomes.org) suggested that 40 SNPs were in genic positions of the genome, as their sequences successfully aligned with corresponding Gen ID.


Assuntos
Cromossomos de Plantas/genética , Hordeum/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Produção Agrícola , Hordeum/crescimento & desenvolvimento , Cazaquistão , Estados Unidos
4.
BMC Plant Biol ; 14: 258, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25928569

RESUMO

BACKGROUND: New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. RESULTS: The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. CONCLUSION: The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.


Assuntos
Polimorfismo de Nucleotídeo Único , Triticum/genética , Cromossomos de Plantas , Genoma de Planta , Cazaquistão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...